Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(43): 28967-28982, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34746588

RESUMO

A coordination polymer with the composition C12H20O16Zn2 (ZnBTC) (BTC = benzene-1,3,5-tricarboxylate) was synthesized under hydrothermal conditions at 120 °C, and its crystal structure was determined using single-crystal X-ray crystallography. First-principles electronic structure investigation of the compound was carried out using the density functional theory computational approach. The highest occupied molecular orbital, the lowest unoccupied molecular orbital, the energy gap, and the global reactivity descriptors of ZnBTC were investigated in both the gas phase and the solvent phase using the implicit solvation model, while the donor-acceptor interactions were studied using natural bond orbital analyses. The results revealed that ZnBTC is more stable but less reactive in solvent medium. The larger stabilization energy E (2) indicates a greater interaction of ZnBTC in the solvent than in the gas phase. Orange peel activated carbon and banana peel activated carbon chemically treated with ZnCl2 and/or KOH were used to modify the synthesis of ZnBTC to obtain nanocomposites. ZnBTC and the nanocomposites were characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis, and Fourier transform infrared. The specific surface area (S BET) and the average pore diameter of the materials were determined by nitrogen sorption measurements using the Brunauer-Emmett-Teller (BET) method, while scanning electron microscopy and transmission electron microscopy were used to observe their morphology and particle size, respectively. The PXRD of all the activated carbon materials exhibited peaks at 2θ values of 12.7 and 13.9° corresponding to a d-spacing of 6.94 and 6.32 Å, respectively. The N2 adsorption-desorption isotherm of the materials are of type II with nanocomposites showing enhanced S BET compared to the pristine ZnBTC. The results also revealed that activated carbons from the banana peel and the derived nanocomposites exhibited better porous structure parameters than those obtained from orange peel. The degradation efficiency of methyl orange in aqueous solutions using ZnBTC as a photocatalyst was found to be 52 %, while that of the nanocomposites were enhanced up to 79 %.

2.
J Mol Model ; 26(12): 349, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33236232

RESUMO

We have obtained analytically the bound state solutions for the non-relativistic Schrodinger equation for the Eckart plus inversely quadratic Yukawa potential (EIQYP) using the parametric Nikiforov-Uvarov (NU) method. In order to validate our approximation, the bound state energies were computed and predicted for some selected diatomic molecules at different adjustable screening parameters from the available spectroscopic model parameters. The fact-finding obtained are in agreement with previously reported results available in literature. Furthermore, the graphs of the effective potential against inter-nuclear distance for low and high values of the screening parameters were reported. From our graphs, we observed that the approximation is best fit for very low values of the screening parameter α ≪ 1.

3.
J Mol Model ; 17(2): 359-76, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20467766

RESUMO

Experimental aspects of the inhibition of the corrosion of mild steel in HCl solutions by some carbozones were studied using gravimetric, thermometric and gasometric methods, while a theoretical study was carried out using density functional theory, a quantitative structure-activity relation, and quantum chemical principles. The results obtained indicated that the studied carbozones are good adsorption inhibitors for the corrosion of mild steel in HCl. The inhibition efficiencies of the studied carbozones were found to increase with increasing concentration of the respective inhibitor. A strong correlation was found between the average inhibition efficiency and some quantum chemical parameters, and also between the experimental and theoretical inhibition efficiencies (obtained from the quantitative structure-activity relation).


Assuntos
Corrosão , Hidrazonas/química , Ácido Clorídrico/química , Aço/química , Tioureia/análogos & derivados , Adsorção , Elétrons , Modelos Químicos , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Tioureia/química
4.
J Mol Model ; 17(4): 633-47, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20524023

RESUMO

Experimental aspect of the inhibition of the corrosion of mild steel by oxaldehydes was carried out using gravimetric, gasometric and thermometric methods while the theoretical studies were carried out using quantum chemical principle and quantitative structure activity relation (QSAR) approaches. The results obtained indicated that the studied oxaldehydes are good inhibitors for the corrosion of mild steel in HCl solutions. The adsorption of the inhibitors on mild steel surface is spontaneous, exothermic and is consistent with the assumptions of Langmuir adsorption isotherm. Excellent correlations were found between the calculated quantum chemical parameters and experimental inhibition efficiencies of the studied compounds. Correlations between theoretical and experimental inhibition efficiencies (for the different Hamiltonians, namely, PM6, PM3, AM1, RM1 and MNDO) were very close to unity. Condensed Fukui function and condensed softness have been used to determine the sites for electrophilic and nucleophilic attacks on each of the inhibitors.


Assuntos
Aldeídos/química , Ácido Clorídrico/efeitos adversos , Aço , Absorção , Benzoína/química , Corrosão , Modelos Teóricos , Fenilglioxal/análogos & derivados , Fenilglioxal/química , Relação Quantitativa Estrutura-Atividade , Aço/química , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...